

Rationale

The exercise of revising the syllabus for science and technology has been carried out with "Learning without burden" as a guiding light and the position papers of the National Focus Groups as points of reference. The aim is to make the syllabus an enabling document for the creation of textbooks that are interesting and challenging without being loaded with factual information. Overall, science has to be presented as a live and growing body of knowledge rather than a finished product.

Very often, syllabi – especially those in science – tend to be at once overspecified and underspecified. They are overspecified in that they attempt to enumerate items of content knowledge which could easily have been left open, e.g., in listing the families of flowering plants that are to be studied. They are underspecified because the listing of 'topics' by keywords such as 'Reflection' fails to define the intended breadth and depth of coverage. Thus there is a need to change the way in which a syllabus is presented.

The position paper on the teaching of science – supported by a large body of research on science education – recommends a pedagogy that is hands-on and inquiry-based. While this is widely accepted at the idea level, practice in India has tended to be dominated by chalk and talk methods. To make in any progress in the desired direction, some changes have to be made at the level of the syllabus. In a hands-on way of learning science, we start with things that are directly related to the child's experience, and are therefore specific. From this we progress to the general. This means that 'topics' have to be reordered to reflect this. An example is the notion of electric current. If we think in an abstract way, current consists of charges in motion, so we may feel it should be treated at a late stage, only when the child is comfortable with 'charge'. But once we adopt a hands-on approach, we see that children can easily make simple electrical circuits, and study several aspects of 'current', while postponing making the connection with 'charge'.

Some indication of the activities that could go into the development of a 'topic' would make the syllabus a useful document. Importantly, there has to be adequate time for carrying out activities, followed by discussion. The learner also needs time to reflect on the classroom experience. This is possible only if the content load is reduced substantially, say by 20-25%.

Children are naturally curious. Given the freedom, they often interact and experiment with things around them for extended periods. These are valuable learning experiences, which are I Syllabus for Secondary and Higher

Levels

essential for imbibing the spirit of scientific inquiry, but may not always conform to adult expectations. It is important that any programme of study give children the needed space, and not tie them down with constraints of a long list of 'topics' waiting to be 'covered'. Denying them this opportunity may amount to killing their spirit of inquiry. To repeat an oft-quoted saying: "It is better to uncover a little than to cover a lot." Our ultimate aim is to help children learn to become autonomous learners.

Themes and Format

There is general agreement that science content up to Class X should not be framed along disciplinary lines, but rather organised around themes that are potentially cross-disciplinary in nature. In the present revision exercise, it was decided that the same set of themes would be used, right from Class VI to Class X. The themes finally chosen are: Food; Materials; The world of the living; How things work; Moving things; People and ideas; Natural phenomena and Natural resources. While these run all through, in the higher classes there is a consolidation of content which leads to some themes being absent, e.g. Food from Class X.

The themes are largely self-explanatory and close to those adopted in the 2000 syllabus for Classes VI-VIII; nevertheless, some comments may be useful. In the primary classes, the 'science' content appears as part of EVS, and the themes are largely based on the children's immediate surroundings and needs: Food, Water, Shelter etc. In order to maintain some continuity between Classes V and VI, these should naturally continue into the seven themes listed above. For example, the Water theme evolves into Natural resources (in which water continues to be a sub theme) as the child's horizon gradually expands. Similarly, Shelter evolves into Habitat, which is subsumed in The world of the living. Such considerations also suggest how the content under specific themes could be structured. Thus clothing, a basic human need, forms the starting point for the study of Materials. It will be noted that this yields a structure which is different from that based on disciplinary considerations, in which materials are viewed purely from the perspective of chemistry, rather than from the viewpoint of the child. Our attempt to put ourselves in the place of the child leads to 'motion', 'transport' and 'communication' being treated together as parts of a single theme: Moving things, people and ideas. More generally, the choice of themes – and sub themes – reflects the thrust towards weakening disciplinary boundaries that is one of the central concerns of NCF-2005.

The format of the syllabus has been evolved to address the underspecification mentioned above. Instead of merely listing 'topics', the syllabus is presented in four columns: Questions, Key concepts, Resources and Activities/Processes.

Perhaps the most unusual feature of the syllabus is that it starts with questions rather than concepts. These are key questions, which are meant to provide points of entry for the child to start the process of thinking. A few are actually children's queries ("How do clouds form?"), but the majority are questions posed by the adult to support and facilitate learning (provide 'scaffolding', in the language of social constructivism). It should be clarified here that these questions are not meant to be used for evaluation or even directly used in textbooks.

for Secondary and Higher Secondary Levels **2**

Syllabus

Along with the questions, key concepts are listed. As the name suggests, these are those concepts which are of a key nature. Once we accept that concept development is a complex process, we must necessarily abandon the notion that acquisition of a specific concept will be the outcome of any single classroom transaction, whether it is a lecture or an activity. A number of concepts may get touched upon in the course of transaction. It is not necessary to list all of them.

The columns of Resources and Activities/Processes are meant to be of a suggestive nature, for both teachers and textbook writers. The Resources column lists not only concrete materials that may be needed in the classroom, but a variety of other resources, including out-of-class experiences of children as well as other people. Historical accounts and other narratives are also listed, in keeping with the current understanding that narratives can play an important role in teaching science. The Activities column lists experiments, as normally understood in the context of science, as well as other classroom processes in which children may be actively engaged, including discussion. Of course, when we teach science in a hands-on way, activities are not addons; they are integral to the development of the subject. Most experiments/activities would have to be carried out by children in groups. Suggestions for field trips and surveys are also listed here. Although the items in this column are suggestive, they are meant to give an idea of the unfolding of the content. Read together with the questions and key concepts, they delineate the breadth and depth of coverage expected.

The Secondary Stage

At the secondary stage, abstraction and quantitative reasoning come to occupy a more central place than in the lower classes. Thus the idea of atoms and molecules being the building blocks of matter makes its appearance, as does Newton's law of gravitation.

One of the traps which we have to avoid is the attempt to be comprehensive. While the temptation exists even in lower classes, at the secondary stage it is particularly strong. This may manifest itself in two ways: adding many more concepts than can be comfortably learnt in the given time frame, and enumeration of things or types of things, even where there is no strong conceptual basis for classification. Thus we may end up with a mass of information that the child has to perforce memorise. An example is the listing of nine types of glass. In the present revision, no attempt is made to be comprehensive. Unnecessary enumeration is avoided. The processes by which factual knowledge can be acquired is more important than the facts themselves.

At this stage, while science is still a common subject, the disciplines of physics, chemistry and biology are beginning to emerge. The child should be exposed to experiences as well as modes of reasoning that are typical of these subjects, while continuing to be encouraged to look at things across disciplinary boundaries. This stage also sees a certain consolidation of knowledge within themes. As a result, a theme may get a lot of space in one class (e.g. How things work in Class X) while being absent from the other.

Syllabus for Secondary and Higher Secondary Levels

Theme/ Sub-theme	Questions	Key concepts	Resources	Activities/ Processes
1. Food Higher yields	What do we do to get higher yields in our farms?	Plant and animal breeding and selection for quality improvement, use of fertilizers, manures; protection from pests and diseases; organic farming.	Visit to any fish/ bee/dairy/pig etc farms; data showing harmful effects of insecticides; process for the preparation of compost, vermi- compost.	Collection of weeds found in fields of different crops; collection of diseased crops; discussion and studying composting/vermi- composting (Periods 8)
2. Materials Material in our clothing	What kinds of clothes help us keep cool? Why do wet clothes feel cool?	Cooling by evaporation. Absorption of heat.	Work done in Class VII; glassware, heat source, black paper, thermometers.	Experiments to show cooling by evaporation. Experiments to show that the white objects get less hot. (Periods 5)
Different kinds of materials	In what way are materials different from each other? Is there some similarity in materials?	All things occupy space, possess mass. Definition of matter.	Everyday substances like wood, salt, paper, ice, steel, water, etc.	To feel the texture, observe the colour and lustre, effect of air, water and heat, etc. on each of the materials (Periods 4)
	In how many ways can you group the different materials you see around? How do solids, liquids and gases	Solid, liquid and gas; characteristics – shape, volume, density; change of state – melting, freezing,	Wax, water, ice, oil, sugar, camphor/ ammonium chloride/ naphthalene.	Sorting out a medley of materials, in various ways. Observe shape and physical state of different materials.

Theme/ Sub-theme	Questions	Key concepts	Resources	Activities/ Processes
	differ from each other? Can materials exist in all the three states?	evaporation, condensation, sublimation.		Observe effect of heat on each of the resources. (Teacher to perform the experiment for camphor, ammonium chloride and naphthalene.) (Periods 4)
What are hings made of?	What are things around you made of? What are the various types of chemical substances?	Elements, compounds and mixtures. Heterogeneous and homogeneous mixtures. Colloids and suspensions.	Samples of commonly available elements, compounds and mixtures. Samples of solution, suspension and colloid.	Discussion on claims 'Air is a mixture' (Mixture of what? How can these be separated?), 'Water is compound' and 'Oxygen is an element'.
	Do substances combine in a definite manner?	Equivalence – that x grams of A is chemically not equal to x grams of B.	Historical accounts. Glassware, chemicals (oxalic acid, sodium hydroxide, magnesium ribbon).	Titration using droppers or syringes, quantitative experiments.
	How do things combine with each other? Are there any patterns which can help us guess how things will combine with each other?	Particle nature, basic units: atoms and molecules. Law of constant proportions. Atomic and molecular masses.	Kits for making molecular models. Historical account including experiments of Lavoisier and Priestley.	Discussion on the fact that elements combine in a fixed proportion through discussion on chemical formulae of familiar compounds.

Theme/ Sub-theme	Questions	Key concepts	Resources	Activities/ Processes
	How do chemists	Mole concept.		Simple numericals t
	weigh and count	Relationship of mole		be done by the
	particles of matter?	to mass of the		students.
		particles and		A game for writing
		numbers.		formulae. e.g. criss
		Valency.		crossing of valenci
		Chemical formulae		to be taught throug
		of common		dividing students
		compounds.		into pairs. Each
		-		student to hold two
				placards: one with
				the symbol and the
				other with the
				valency. Keeping
				symbols in place,
				teacher to move
				only valencies to
				form the formula
				of a compound.
				or a compound.
What is there	Can we see an atom	Atoms are made up	Charts, films etc.	Brief historical
inside an	or a molecule under	of smaller particles:		account of
atom?	a microscope or by	electrons, protons,		Rutherford's
	some other means?	and neutrons.		experiment.
	What is there inside	These smaller		(Periods
	an atom?	particles are present		× ×
		in all the atoms but		
		their numbers vary in		
		different atoms.		
		Isotopes and isobars.		
		F		
3. The World				
of the Living				
Biological	How do the various	Diversity of plants	Specimens of some	Discussion on
Diversity	plants around us	and animals – basic	animals, and plants	diversity and the
	P			

Theme/ Sub-theme	Questions	Key concepts	Resources	Activities/ Processes
	differ from each other? How are they similar? What about animals? How are they similar to and different from each other?	issues in scientific naming, Basis of classification, Hierarchy of categories/groups, Major groups of plants (salient features) (Bacteria, Thallophyta, Bryophyta, Pteridophyta, Gymnosperms and Angiosperms). Major groups of animals (salient features) (Non- chordates up to phyla and Chordates up to classes).	not easily observable around you.	characteristics associated with any group. (Periods 14)
What is the living being made up of?	What are we made up of? What are the different parts of our body? What is the smallest living unit?	Cell as a basic unit of life; Prokaryotic and eukaryotic cells, multicellular organisms; cell membrane and cell wall, cell organelles: chloroplast, mitochondria, vacuoles, ER, Golgi Apparatus; nucleus, chromosomes – basic structure, number. Tissues, organs, organ	Permanent slides, model of the human body.	Observation of model of human body to learn about levels of organization – tissue, organ, system, and organism, observe blood smears (frog and human), cheek cells, onion peel cell, Spirogyra, Hydrilla leaves (cyclosis). (Periods 12)

Downloaded From: http://cbseportal.com

Theme/ Sub-theme	Questions	Key concepts	Resources	Activities/ Processes
Sub-theme				Processes
		Structure and functions of animal and plant tissues (four types in animals; meristematic and permanent tissues in plants).		
How do we fall sick?	What are the various causes of diseases? How can diseases be prevented? How can we remain healthy?	Health and its failure. Disease and its causes. Diseases caused by microbes and their prevention – Typhoid, diarrhoea, malaria, hepatitis, rabies, AIDS, TB, polio; pulse polio programme.	Newspaper articles, information from health centres, photographs of various causal organisms. Photographs, permanent slides of bacteria.	Surveying neighbourhood to collect information on disease occurrence pattern. Studying the life cycle of the mosquito and malarial parasite. Discussion on how malaria is spread, how to prevent mosquito breeding. (Periods 1)
How do substances move from cell to cell?	How do food and water move from cell to cell? How do gases get into the cells? What are the substances that living organisms exchange with the external world? How do they obtain these substances?	Diffusion/exchange of substances between cells and their environment, and between the cells themselves in the living system; role in nutrition, water and food transport, excretion, gaseous exchange.	Egg membrane, <i>Rhoeo</i> leaves, sugar, microscope, slides.	Looking at closed and open stomata, plasmolysis in <i>Rhoed</i> leaf peels. (Periods 1.

Theme/ Sub-theme	Questions	Key concepts	Resources	Activities/ Processes
. Moving Things, People and Ideas				
Motion	How do we describe motion?	Motion – displacement, velocity; uniform and non-uniform motion along a straight line, acceleration, distance-time and velocity time graphs for uniform and uniformly accelerated motion, equations of motion by graphical method; elementary idea of uniform circular motion.		Analysis of motion of different common objects. Drawing distance- time and velocity- time graphs for uniform motion and for uniformly accelerated motion. (Periods 12)
orce and lewton's laws	What makes things change their state of motion?	Force and motion, Newton's laws of motion: inertia of a body, inertia and mass, momentum, force and acceleration. Elementary idea of conservation of momentum, action and reaction forces.	Historical accounts; Experiences from daily life; wooden and glass boards, sand, balls; wooden support, some coins (say of Rs. 2 or Rs. 5); tumbler; balloons etc.	Demonstrating the effect of force on the state of motion of objects in a variety of daily-life situations. Demonstrate the change in direction of motion of an object by applying force. (Periods 10)
ravitation	What makes things fall?	Gravitation; universal law of gravitation,	Spring balance	Analysis of motion of ball falling down

Theme/ Sub-theme	Questions	Key concepts	Resources	Activities/ Processes
	Do all things fall in the same way?	force of gravitation of the earth (gravity), acceleration due to gravity; mass and weight; free fall.		and of ball thrown up. Measuring mass and weight by a spring balance. (Periods 7)
Work, energy and power	How do we measure work done in moving anything? How does falling water make a mill run?	Work done by a force, energy, power; kinetic and potential energy; law of conservation of energy.	Rope (or string), board or plank, wooden block, ball, arrow, bamboo stick, spring, etc.	Experiments on body rolling down inclined plane pushing another body. Experiments with pendulum. Experiments with spring. Discussion. (Periods 6)
Floating bodies	How does a boat float on water?	Thrust and pressure. Archimedes' principle, buoyancy, elementary idea of relative density.	Cycle pump; board pins, bulletin board, mug, bucket, water etc.	Experiments with floating and sinking objects. (Periods 4)
How do we hear from a distance?	How does sound travel? What kind of sounds can we hear? What is an echo? How do we hear?	Nature of sound and its propagation in various media, speed of sound, range of hearing in humans; ultrasound; reflection of sound; echo and sonar. Structure of the human ear (auditory aspect only).	String, ball or stone as bob, water tank, stick, slinky, rope, echo tube, rubber pipe etc. Model or chart showing structure of the ear.	Experiment on reflection of sound. (Periods 10)

Theme/ Sub-theme	Questions	Key concepts	Resources	Activities/ Processes
5. How Things Work 6. Natural Phenomena				
7. Natural Resources Balance in	Why do air, water	Physical resources:	Daily newspapers,	Case studies of
Nature	and soil seem not to be consumed? How does the presence of air support life on earth? How have human activities created disturbances in the atmosphere? How does nature work to maintain balance of its components?	 air, water, soil. Air for respiration, for combustion, for moderating temp- eratures, movements of air and its role in bringing rains across India. Air, water and soil pollution (brief introduction). Holes in ozone layer and the probable damages. Bio-geo chemical cycles in nature: water, oxygen, 	Daily newspapers, magazines and other reading materials. Weather reports over a few months and air quality reports over the same time period. Case study material.	actual situation in India with more generalised overview of inter relationship of air, water, soils, forests. Debates on these issues using resources mentioned alongside, visit to/ from an environmental NGO; discussion. (Periods 15)

Theme/ Sub-theme	Questions	Key concepts	Resources	Activities/ Processes
1. Food 2. Materials				
Different	Why are some	Acids, bases and salts:	Orange juice, lemon	Testing different
kinds of	substances sour and	General properties,	juice, soap solution,	substances with
materials	some bitter in taste?	examples and uses.	litmus solution, zinc,	indicators.

Syllabus for Secondary and Higher Secondary Levels 12

1

Theme/ Sub-theme	Questions	Key concepts	Resources	Activities/ Processes
	Why does soap		copper and	Neutralisation
	solution feel		aluminium metals.	reactions
	slippery?		Acids: hydrochloric	(Periods
	Why does seawater		acid, sulphuric acid,	× ×
	taste salty?		nitric acid. Bases:	
	·		sodium hydroxide.	
			Common salt.	
	Why does iron rust?	Types of chemical	Turmeric, limejuice,	Mixing pairs of
	Why does painted	reactions:	vinegar, baking soda,	substances
	iron not rust?	combination,	washing soda, yeast,	mentioned
	Why is burning	decomposition,	hot water.	alongside, to see th
	sensation removed	displacement, double	Materials such as iron	reactions –
	when one takes	displacement,	nails, copper strip,	discussion on
	antacids?	precipitation,	aluminium strip, zinc	chemistry in the
	Why do substances	neutralisation,	strip, galvanised strip,	kitchen, chemistry
	stop burning in the	oxidation and	petri dishes with and	inside our bodies.
	absence of air?	reduction in terms	without covers,	Carrying out simpl
	Why is flame seen	of gain and loss of	container that can be	reactions that
	when substances	oxygen and	filled with water,	encompass
	burn?	hydrogen.	cotton wool, etc.	decomposition,
	Can substances			displacement,
	burn without flame?			double
	Why does a			displacement,
	matchstick kept in			precipitation,
	the blue part of the			neutralisation,
	flame not burn?			oxidation and
	Why is a red coating			reduction.
	formed on the zinc			(Periods 1
	rod when it is kept			
	in copper sulphate			
	solution?			
	What is the material			
	of the coating?			

Theme/ Sub-theme	Questions	Key concepts	Resources	Activities/ Processes
How things change/react with one another.?	How do copper, silver, iron exist in nature?	Brief discussion of basic metallurgical processes. Properties of common metals. Elementary idea about bonding.	Samples of metals: iron, copper, lead, silver, zinc, aluminium, gold; of non-metals: sulphur, graphite; of alloys: steel, brass	Discussions on metallurgical processes and simple experiments involving metals, with chemical reactions.
	What is the composition of natural gas used for cooking? What is petrol? What is vinegar?	Carbon compounds, elementary idea about bonding. Saturated hydrocarbons, alcohols, carboxylic acids: (no preparation, only properties).	Models	Experiments involving reactions of carbon and its compounds with chemical reactions. Use of models. (Periods 16)
Materials of common use	How is common salt obtained? Besides its use in food, is it used for other purposes? What makes Washing soda and baking soda different materials? How does bleaching powder make paper and cloth white? What is the white material that is used for making casts?	Soap – cleansing action of soap.	Kit containing various materials like common salt, washing soda, baking soda, lime, lime stone, bleaching powder, plaster of Paris, soaps; alcohol.	Use of kit materials for demonstration as well as performing of experiments by student of properties.Visits to factories. (Periods 8)

Theme/ Sub-theme	Questions	Key concepts	Resources	Activities/ Processes
	material be used for cleaning clothes? Why does a man lose control on his body after drinking alcohol? Why do people become blind on drinking denatured alcohol?			
How are elements classified?	How do chemists study such a large number of elements?	Gradations in properties: Mendeleev periodic table.	Brief historical account, charts, films etc.	Predicting trends on the basis of the table. (Periods 5
3. The World of the Living Our Environment	What will happen if we bury different materials in the soil? What will happen if we kill all insects? Some of us eat meat; some do not – what about animals?	Our Environment: Environmental problems, what can we do? Bio degradable, non- biodegradable. Ozone depletion.	Discussion on food habits of animals, finding out the various waste materials produced and their disposal in different parts of the country.	Activity of buryin different materials is the soil and studyin periodically what happens; construction of food web usin models, classification of some common plants and animals at consumers etc. (Periods 8)
How do we stay alive?	What are the processes needed for living?	Define 'living' things; Basic concept of nutrition, respiration, transport and excretion in plants and animals.	Models and charts of various systems in animals, and parts in plants.	Study various things around to decide whether they are living/non living. (Periods 1)

Theme/ Sub-theme	Questions	Key concepts	Resources	Activities/ Processes
Control in the iving	Why do roots grow towards the ground? Can we make them grow upwards? Why do stems grow upwards?	Tropic movements in plants; Introduction to plant hormones; Control and coordination in animals: voluntary, involuntary and reflex action, nervous system; chemical coordination: animal hormones.	Young plants for experiments, seeds; Kit materials; Pavlov's experiment on conditioned reflex.	Experiments on tropic movements in plants – geotropism, hydrotropism, phototropism, interaction of factors; experiment on apical dominance; demonstration of reflex action. (Periods 10)
Reproduction n the living	Do plants and animals have similar reproductive cycles? Can we decide how many children are born in a family?	Reproduction in plants and animals. Need for and methods of family planning. Safe sex vs. HIV/ AIDS. Childbearing and women's health.	Permanent slide L.S. grain; charts/ specimens of embryos, egg. Charts and other materials on family planning. Newspaper reports on HIV/AIDS.	Study pollen tube growth and pollen tubes on a stigmatic mount, mount soaked seeds to see embryonal axis, cotyledons etc., seed germination – epigeal and hypogeal; structure of the hen's egg. Discussion on family planning and responsible parenting. (Periods 10)
Heredity and evolution	Why are we like our parents? Did similar plants and animals exist in the past? Did life always exist?	Heredity; Origin of life: brief introduction; Basic concepts of evolution.	Data and worksheet from Mendel's experiments, specimen of fossil.	Phenotypic ratio 3:1, 2:1., 9:3:3:1 (Periods 10)

Downloaded From: http://cbseportal.com

Syllabus for Secondary and Higher Secondary Levels 16

6

Theme/ Sub-theme	Questions	Key concepts	Resources	Activities/ Processes
4. Moving Things, People and Ideas 5. How things work Electric Circuits	In which direction does current flow inside a conductor?	Potential difference, potential.	Battery, conductor voltmeter, ammeter, connecting wire, key.	Using a simple electric circuit, show that charges flow from higher potential to lower potential. Use the analogy of flow of water from higher (potential to highest energy) lower height (lower
	How is potential difference across a conductor related to current through the conductor?	Ohm's law	-do- And rheostats	Description of the potential energy). Using a circuit consisting of a conductor, battery, key, voltmeter and ammeter, establish a relationship between potential difference and current and hence Ohm's law.
	How can you arrange a given set of resistors so that the same current flows through all?	Series combination of resistances.	-do- and given set of resistors.	Using the Ohm's law circuit, establishing the properties of series combination and the rule for resistance.

Theme/ ub-theme	Questions	Key concepts	Resources	Activities/ Processes
	How are appliances connected in a house?	Parallel combination of resistances.	-do- and given set of resistors.	Establishing the rule for parallel combination of resistors.
	How much heat is generated when a current I flows through a resistor?	Power dissipated due to current. Inter relation between P, V, I and R.	Appliances based on heating effect of current in daily life.	Identification of appliances in daily life base on heating effect of current. Calculation of power in daily life situations. (Periods 12)
gnets	How does the needle of a compass change direction when placed at different points near a magnet?	Magnetic field Field lines	A magnet, compass, white sheet, drawing board, drawing pins.	Drawing magnetic field lines in vicinity of a bar magnet.
	Does a current carrying conductor produce a magnetic field?	Field due to a current carrying wire. Field due to current carrying coil or solenoid.	A battery, a conductor, compass, key, A coil, A solenoid.	Demonstrating that a current carrying conductor produces a magnetic field. Demonstrating the magnetic field produced by a current carrying coil or solenoid.
	What happens to a current carrying conductor when it is placed in a magnetic field?	Force on current carrying conductor Fleming's left hand rule.	A small rod, stand and two wires for suspe-nding the rod, a strong horseshoe magnet.	Demonstrating that a current carrying conductor when placed in a magnetic field experiences force.

Syllabus for Secondary and Higher Secondary Levels 18

6

Theme/ Sub-theme	Questions	Key concepts	Resources	Activities/ Processes
	How does the above effect help us to design machines to do work?	Electric motor.	Appliances using motors.	Demonstrating the working of a motor. Identifying the appliances based on electric motors.
	What do you observe when a magnet is moved towards a wire connected to a galvanometer?	Electromagnetic induction. Induced potential differences, induced current.	Two coils of wire, a magnet, a galvanometer. Iron nails, battery, switch.	Demonstrating the phenomenon of electromagnetic induction. Demonstrating that current is induced in a coil kept near a coil in which current changes.
	How can the phenomenon of electromagnetic induction be used to design a device to generate electricity?	Electric generator. principle and working.	A simple model of electric generator.	Demonstrating the principle and working of a generator.
	Does the current produced by a generator have the same direction all the time?	Direct current. Alternating current; frequency of AC. Advantage of AC over DC.	Model of electric generator.	Familiarising with voltage and frequency of AC in our homes.
	How are the bulbs etc. connected to the AC source in our homes?	Domestic electric circuits.	Demonstration board for domestic electric circuit.	Explaining the working of domestic electric circuits. Demonstrating the

Theme/ Sub-theme	Questions	Key concepts	Resources	Activities/ Processes
				use of a fuse in domestic circuit. (Periods 12)
Natural				
Phenomena	Why is paper burnt when light passing through a lens strikes it?	Convergence and divergence of light.	Experience. Double convex lens.	Observation of convergence and divergence with lenses.
	Does a spherical mirror also exhibit similar phenomenon? Can we see a full image of a tall building using a small mirror?	Images formed by a concave mirror; related concepts centre of curvature, principal axis. Optical centre, focus, focal length.	A candle, stand to hold a mirror, meter scale.	Exploring and recording features of images formed by a concave mirror, by placing an object beyond c.c., between c.c. and focus, and between pole and focus; ray diagrams.
	Why does a spoon partly immersed in water in a transparent glass appear broken at the level of water when viewed from the sides?	Refraction; laws of refraction.	Glass slab, pins.	Activity to explore laws of refraction.
	What do lenses do? How do they correct defects in vision?	Images formed by a convex lens; functioning of lens in human eye; problems of vision and remedies.	Convex lens.	Activity exploring and recording features of images formed by convex lens. Ray diagrams. Studying the glasses used by

Syllabus for Secondary and Higher Secondary Levels 20

6

Theme/ Sub-theme	Questions	Key concepts	Resources	Activities/ Processes
		Application of spherical mirrors and lenses.		human beings to correct different vision defects.
	Why does the path of light change on entering a different medium?	Appreciation of concept of refraction; velocity of light; refractive index; twinkling of stars; dispersion of light.	Concepts learnt earlier.	Activities studying refraction.
	Why or how does a prism disperse light?	Dispersion of light.	Prism, pins.	Observation of objects through prisms; tracing rays refracted through a prism; discussion.
	Why is the sky blue?	Scattering of light.	Observations and experience.	Activity showing scattering of light in emulsion etc. (Periods 25)
7. Natural				
Resources Conservation of Natural Resources	How can we contribute to protect environment in our locality? What are the major global environmental issues of direct relevance to us?	Management of natural resources. Conservation and judicious use of natural resources. Forest and wild life, coal and petroleum conservation.	Articles/stories on conservation; Posters on environmental awareness.	Case studies with focus on commercial activities exploiting natural resources. Effect of these on varies cycles in natures.

Theme/ Sub-theme	Questions	Key concepts	Resources	Activities/ Processes
	What are the steps expected on the part of local administration to maintain balances in nature in your region? How can we help?	People's participation. Chipko movement. Legal perspectives in conservation and international scenario.	Case studies on Chipko movement; CNG use.	Making posters/ slogans for creating awareness.
The regional environment	How does the construction of big dams affect the life of the people and the regional environment? Are rivers, lakes, forests and wild life safe in your area?	Big dams: advantages and limitations; alternatives if any. Water harvesting. Sustainability of natural resources.	Case study material on dams. Resource material on water harvesting.	Case studies with focus on issues of construction of dams and related phenomena (actual/ probable). Debates on issues involved.
Sources of energy	What are the various sources of energy we use? Are any of these sources limited? Are there reasons to prefer some of them over others?	Different forms of energy, leading to different sources for human use: fossil fuels, solar energy; biogas; wind, water and tidal energy; nuclear energy. Renewable versus non-renewable sources.	Experience; print material on various sources of energy; materials to make a solar heater.	Discussion. Making models and charts in groups. Making a solar heater/cooker. (Periods 8)